The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 X 1 1 1 X 1 X X 0 X^2+2 0 X^2+2 0 X^2+2 0 X^2+2 0 X^2+2 X^2+2 0 X^2+2 0 0 X^2+2 0 X^2+2 0 X^2+2 0 X^2+2 0 X^2+2 0 X^2+2 0 X^2+2 2 X^2 2 X^2 0 X^2+2 2 X^2 0 X^2+2 2 X^2 0 X^2+2 2 X^2 0 X^2+2 2 X^2 0 2 X^2+2 X^2 0 2 X^2+2 X^2 0 2 X^2+2 X^2 0 2 X^2+2 X^2 2 X^2 2 X^2 2 2 X^2 X^2 2 0 X^2+2 X^2 X^2 2 0 X^2 X^2 2 X^2 2 X^2+2 2 X^2 X^2 X^2 X^2+2 X^2+2 X^2 X^2+2 X^2+2 X^2+2 X^2+2 X^2+2 0 0 2 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 2 0 0 0 0 0 2 2 0 0 0 0 0 0 2 0 0 2 2 0 2 2 2 2 2 0 2 2 2 0 0 0 2 0 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 0 2 0 0 2 0 2 2 2 2 0 0 2 2 2 0 0 0 2 2 2 0 2 0 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 0 2 2 0 0 2 0 2 2 2 2 2 2 2 2 2 0 2 0 2 2 0 0 2 2 0 0 2 2 0 2 0 0 2 0 2 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 2 0 2 0 0 2 0 2 2 0 0 2 0 2 2 2 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 2 0 0 0 0 0 0 2 0 2 0 0 2 0 2 0 0 0 2 2 2 2 2 0 2 0 2 0 2 0 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 2 2 2 2 0 2 2 0 0 0 2 2 2 2 2 2 0 2 0 2 0 2 2 2 2 0 0 0 0 0 0 2 0 2 2 2 2 2 0 2 2 2 0 0 2 0 2 2 0 2 0 0 2 2 0 0 2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 2 2 0 2 0 2 0 2 0 2 2 0 2 0 0 2 0 2 0 2 2 0 0 2 0 2 2 2 0 0 0 2 0 2 2 0 2 2 2 0 2 0 2 2 2 0 2 2 0 2 2 generates a code of length 97 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 92. Homogenous weight enumerator: w(x)=1x^0+114x^92+16x^93+52x^94+64x^95+120x^96+1376x^97+56x^98+64x^99+90x^100+16x^101+20x^102+53x^104+4x^108+1x^112+1x^184 The gray image is a code over GF(2) with n=776, k=11 and d=368. This code was found by Heurico 1.16 in 1.31 seconds.